"); //-->
XGBoost
XGBoost (eXtreme Gradient Boosting)是一种梯度增强决策树算法。它使用集成方法,其中添加新的决策树模型来修改现有的决策树分数。与SARIMA不同的是,XGBoost是一种多元机器学习算法,这意味着该模型可以采用多特征来提高模型性能。
我们采用特征工程提高模型精度。还创建了3个附加特性,其中包括AC和DC功率的滞后版本,分别为S1_AC_POWER和S1_DC_POWER,以及通过交流功率除以直流功率的总体效率EFF。并将AC_POWER和MODULE_TEMPERATURE从数据中删除。图14通过增益(使用一个特征的分割的平均增益)和权重(一个特征在树中出现的次数)显示了特征的重要性级别。
通过网格搜索确定建模使用的超参数,结果为:*learning rate = 0.01, number of estimators = 1200, subsample = 0.8, colsample by tree = 1, colsample by level = 1, min child weight = 20 and max depth = 10
我们使用MinMaxScaler将训练数据缩放到0到1之间(也可以试验其他缩放器,如log-transform和standard-scaler,这取决于数据的分布)。通过将所有自变量向后移动一段时间,将数据转换为监督学习数据集。
import numpy as np import pandas as pd import xgboost as xgb from sklearn.preprocessing import MinMaxScaler from time import time
def train_test_split(df, test_len=48): """ split data into training and testing. """ train, test = df[:-test_len], df[-test_len:] return train, test
def data_to_supervised(df, shift_by=1, target_var='DC_POWER'): """ Convert data into a supervised learning problem. """ target = df[target_var][shift_by:].values dep = df.drop(target_var, axis=1).shift(-shift_by).dropna().values data = np.column_stack((dep, target)) return data
def xgb_forecast(train, x_test): """ XGBOOST model which outputs prediction and model. """ x_train, y_train = train[:,:-1], train[:,-1] xgb_model = xgb.XGBRegressor(learning_rate=0.01, n_estimators=1500, subsample=0.8, colsample_bytree=1, colsample_bylevel=1, min_child_weight=20, max_depth=14, objective='reg:squarederror') xgb_model.fit(x_train, y_train) yhat = xgb_model.predict([x_test]) return yhat[0], xgb_model
def walk_forward_validation(df): """ A walk forward validation approach by scaling the data and changing into a supervised learning problem. """ preds = [] train, test = train_test_split(df)
scaler = MinMaxScaler(feature_range=(0,1)) train_scaled = scaler.fit_transform(train) test_scaled = scaler.transform(test)
train_scaled_df = pd.DataFrame(train_scaled, columns = train.columns, index=train.index) test_scaled_df = pd.DataFrame(test_scaled, columns = test.columns, index=test.index)
train_scaled_sup, test_scaled_sup = data_to_supervised(train_scaled_df), data_to_supervised(test_scaled_df) history = np.array([x for x in train_scaled_sup])
for i in range(len(test_scaled_sup)): test_x, test_y = test_scaled_sup[i][:-1], test_scaled_sup[i][-1] yhat, xgb_model = xgb_forecast(history, test_x) preds.append(yhat) np.append(history,[test_scaled_sup[i]], axis=0)
pred_array = test_scaled_df.drop("DC_POWER", axis=1).to_numpy() pred_num = np.array([pred]) pred_array = np.concatenate((pred_array, pred_num.T), axis=1) result = scaler.inverse_transform(pred_array)
return result, test, xgb_model
if __name__ == '__main__': start_time = time() xgb_pred, actual, xgb_model = walk_forward_validation(dropped_df_cat) time_len = time() - start_time
print(f'XGBOOST runtime: {round(time_len/60,2)} mins')
图15显示了XGBoost模型的预测值与SP2 2天内记录的直流功率的比较。
CNN-LSTM
CNN-LSTM (convolutional Neural Network Long - Short-Term Memory)是两种神经网络模型的混合模型。CNN是一种前馈神经网络,在图像处理和自然语言处理方面表现出了良好的性能。它还可以有效地应用于时间序列数据的预测。LSTM是一种序列到序列的神经网络模型,旨在解决长期存在的梯度爆炸/消失问题,使用内部存储系统,允许它在输入序列上积累状态。
在本例中,使用CNN-LSTM作为编码器-****体系结构。由于CNN不直接支持序列输入,所以我们通过1D CNN读取序列输入并自动学习重要特征。然后LSTM进行解码。与XGBoost模型类似,使用scikitlearn的MinMaxScaler使用相同的数据并进行缩放,但范围在-1到1之间。对于CNN-LSTM,需要将数据重新整理为所需的结构:[samples, subsequences, timesteps, features],以便可以将其作为输入传递给模型。
由于我们希望为每个子序列重用相同的CNN模型,因此使用timedidistributedwrapper对每个输入子序列应用一次整个模型。在下面的图16中可以看到最终模型中使用的不同层的模型摘要。
在将数据分解为训练数据和测试数据之后,将训练数据分解为训练数据和验证数据集。在所有训练数据(包括验证数据)的每次迭代之后,模型可以进一步使用这一点来评估模型的性能。
学习曲线是深度学习中使用的一个很好的诊断工具,它显示了模型在每个阶段之后的表现。下面的图17显示了模型如何从数据中学习,并显示了验证数据与训练数据的收敛。这是良好模特训练的标志。
import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error from sklearn.preprocessing import MinMaxScaler import keras from keras.models import Sequential from keras.layers.convolutional import Conv1D, MaxPooling1D from keras.layers import LSTM, TimeDistributed, RepeatVector, Dense, Flatten from keras.optimizers import Adam
n_steps = 1 subseq = 1
def train_test_split(df, test_len=48): """ Split data in training and testing. Use 48 hours as testing. """ train, test = df[:-test_len], df[-test_len:] return train, test
def split_data(sequences, n_steps): """ Preprocess data returning two arrays. """ x, y = [], [] for i in range(len(sequences)): end_x = i + n_steps
if end_x > len(sequences): break x.append(sequences[i:end_x, :-1]) y.append(sequences[end_x-1, -1])
return np.array(x), np.array(y)
def CNN_LSTM(x, y, x_val, y_val): """ CNN-LSTM model. """ model = Sequential() model.add(TimeDistributed(Conv1D(filters=14, kernel_size=1, activation="sigmoid", input_shape=(None, x.shape[2], x.shape[3])))) model.add(TimeDistributed(MaxPooling1D(pool_size=1))) model.add(TimeDistributed(Flatten())) model.add(LSTM(21, activation="tanh", return_sequences=True)) model.add(LSTM(14, activation="tanh", return_sequences=True)) model.add(LSTM(7, activation="tanh")) model.add(Dense(3, activation="sigmoid")) model.add(Dense(1))
model.compile(optimizer=Adam(learning_rate=0.001), loss="mse", metrics=['mse']) history = model.fit(x, y, epochs=250, batch_size=36, verbose=0, validation_data=(x_val, y_val))
return model, history
# split and resahpe data train, test = train_test_split(dropped_df_cat)
train_x = train.drop(columns="DC_POWER", axis=1).to_numpy() train_y = train["DC_POWER"].to_numpy().reshape(len(train), 1)
test_x = test.drop(columns="DC_POWER", axis=1).to_numpy() test_y = test["DC_POWER"].to_numpy().reshape(len(test), 1)
#scale data scaler_x = MinMaxScaler(feature_range=(-1,1)) scaler_y = MinMaxScaler(feature_range=(-1,1))
train_x = scaler_x.fit_transform(train_x) train_y = scaler_y.fit_transform(train_y)
test_x = scaler_x.transform(test_x) test_y = scaler_y.transform(test_y)
# shape data into CNN-LSTM format [samples, subsequences, timesteps, features] ORIGINAL train_data_np = np.hstack((train_x, train_y)) x, y = split_data(train_data_np, n_steps) x_subseq = x.reshape(x.shape[0], subseq, x.shape[1], x.shape[2])
# create validation set x_val, y_val = x_subseq[-24:], y[-24:] x_train, y_train = x_subseq[:-24], y[:-24]
n_features = x.shape[2] actual = scaler_y.inverse_transform(test_y)
# run CNN-LSTM model if __name__ == '__main__': start_time = time()
model, history = CNN_LSTM(x_train, y_train, x_val, y_val) prediction = []
for i in range(len(test_x)): test_input = test_x[i].reshape(1, subseq, n_steps, n_features) yhat = model.predict(test_input, verbose=0) yhat_IT = scaler_y.inverse_transform(yhat) prediction.append(yhat_IT[0][0])
time_len = time() - start_time mse = mean_squared_error(actual.flatten(), prediction)
print(f'CNN-LSTM runtime: {round(time_len/60,2)} mins') print(f"CNN-LSTM MSE: {round(mse,2)}")
图18显示了CNN-LSTM模型的预测值与SP2 2天内记录的直流功率的对比。
由于CNN-LSTM的随机性,该模型运行10次,并记录一个平均MSE值作为最终值,以判断模型的性能。图19显示了为所有模型运行记录的mse的范围。
结果对比下表显示了每个模型的MSE (CNN-LSTM的平均MSE)和每个模型的运行时间(以分钟为单位)。
从表中可以看出,XGBoost的MSE最低、运行时第二快,并且与所有其他模型相比具有最佳性能。由于该模型显示了一个可以接受的每小时预测的运行时,它可以成为帮助运营经理决策过程的强大工具。
总结在本文中我们分析了SP1和SP2,确定SP1性能较低。所以对SP2的进一步调查显示,并且查看了SP2中那些模块性能可能有问题,并使用假设检验来计算每个模块在统计上明显表现不佳的次数,' Quc1TzYxW2pYoWX '模块显示了约850次低性能计数。
我们使用数据训练三个模型:SARIMA、XGBoost和CNN-LSTM。SARIMA表现最差,XGBOOST表现最好,MSE为16.9,运行时间为1.43 min。所以可以说XGBoost在表格数据中还是最优先得选择。
本文代码:https://github.com/Amitdb123/Solar_Power_Analysis-Prediction
数据集:https://www.kaggle.com/datasets/ef9660b4985471a8797501c8970009f36c5b3515213e2676cf40f540f0100e54
作者:Amit Bharadwa
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。