"); //-->
规范约束的是数仓建设的全流程,以及后续的迭代和运维。事实上,数仓规范文档,应该随着架构设计文档,在数仓开发启动之前,分发给所有相关人员,且是所有人都必须严格遵守的约定。
俗话说的好,无规矩不成方圆,没有规范岂不乱套了? 个人觉得,规范是为了解决团体作战中的效率和协同问题,是对最终交付质量的有力保证。
大家工作中有没有遇到类似的问题?
由于以上种种问题,造成数仓团队的整体开发效率、产出质量、工作幸福感、数仓维护成本等等越来越差。随着人员流动,通常受累的往往是那些任劳任怨、对公司忠诚的员工。
相信做过数据开发的人,多多少少都会有过上边提到的部分苦恼。我觉得问题的根源通常在于没有规范或者规范没有得到贯彻。大家有时候为了按时完成业务侧的需求,走些捷径也是可以理解的,但是欠下的技术债应该尽早还上,并且组织不应该苛责员工,这个锅应该领导来背。领导重视大家就都重视,领导不重视,岂不各个放飞自我了?
数据仓库,是我们数据工程师的无形产品。数据规范是数仓体系建设的"语言",是数据使用的说明书和翻译官,同时也是数据质量的保驾护航者。为了数据体系能够长久健康的发展,数仓管理,应该从人治逐步转变到制度化、规范化、工具化的道路上了来。
从 0 到 1,从无到有,这个环节应该有 Leader 或架构师,充分考虑公司实际情况,参考行业标准或约定俗成的规范,综合统一制定。
也可以将规范拆分后交由各个部分核心开发人员编写, Leader 或架构师统一整合。比如我们之前的团队就是,模型设计师负责模型设计规范,ETL 工程师负责 ETL 开发规范,BI 开发人员制定前端开发规范,部署上线规范直接采用项目上已有的即可。
总体上,初稿应该尽量保证规范的完整性和各个部分间的兼容性。
初稿完成后,难免有考虑不周的情况,这时候最好有 Leader 牵头,组织部分核心成员(人数不易太多,三五个即可。人多容易造成混乱、决策困难、没有人提意见造成 Leader 一言堂等等问题。)进一步完善各个细节,纠正初稿的不足。
多人共同完善的规范,理论上来讲不会有什么大问题了。
定稿后,规范已经具备了全面推广的条件,可以下发所有团队成员。
为了确保规范的贯彻落实,除了通过以上两点引起全员重视外,还需要组织、制度、流程上的多方面保障。
规范的执行监督,上边提到的,更多是依靠制度流程以及相关人的自觉性,制度流程又依赖于人。这会带来如下几个问题:
短期坚持还好,但长期的专注很难。
有时候人忙起来了,快速产出和规范该选哪个?代码 Review 还要不要做?新建的表要不要找数据架构师审核?
数据建模最好是有专门的人或者小团队去做,其他人使用,这往往会影响整体效率,所以通常都是谁用谁建,但撒出去后再想靠人去检查合规性,真的就太难了。
有条件的最好引入相应的工具加强监管。
比如,我们有指标体系元数据、有词根库元数据、有建表的元数据、有 ETL 流程的元数据等等。
那我们是否可以开发部分报表或其它页面,通过 UI 辅助人去检查,或者通过校验元数据的方法去监管(比如备注是否为空、字段或表命名里的词根是否都在词根库里存在、表或页面等用到的指标是否都存在于指标体系、数据血缘中是否存在闭环或者孤立的节点)。
发行稿,从大面上应该不会有啥问题,但细节上可能会有考虑不周的情况,在宣讲阶段、执行阶段遇到问题阻碍的时候,应该根据实际情况对规范做出调整,唯有经过实践检验才能愈发完善,相信经过一段时间的持续实践,规范会成为组织文化的一部分,进而降低沟通成本、提高开发效率、保证交付质量,从而实现团队和个人的双赢。
为了让大家了解到数仓规范全貌,特意花大力气整理出以上分类。欢迎大家推广普及运用。由于只是一家之言,大家如有不同的见解、更好的方案或者有可以再补充的,欢迎关注我们一起进步。
这里,我把数仓规范,一共分为四大类:设计规范、流程规范、质量管理规范、安全规范。
设计规范,又划分为四部分:数据模型设计、命名规范、指标体系设计、词根库。
流程规范,主要是从数仓管理的角度,对数仓场景下的各种流程进行约束。核心流程一共提炼出来五类:需求提交、模型设计、ETL开发、前端开发、上线流程。
质量管控规范,之所以单独列出来,是因为数据质量,跟模型设计一样,对数仓建设的成败关系极大。试想下,一个数据质量都无法保证的数据仓库,有谁会用? 数据质量规范,主要是从数据流动的角度分为三类:源端管控、数仓管理、应用管控。
安全规范,随着国家、社会、企业对数据的越来越重视,另一方面随着互联网的普及使得个人隐私变的越来越难以保证,数据泄露时有发生。数据安全对于数据仓库的重要程度急速提升,所以安全规范被单列了出来。从大的层面上安全规范分为三类:网络安全、账号安全、数据安全。
横向分层
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。