"); //-->
有时,正态分布倾向于向一边倾斜。这是因为数据大于或小于平均值的概率更高,因此使得分布不对称。这也意味着数据不是均匀分布的。
偏度可以与其他描述性统计一起描述变量的分布。通过偏度也可以判断变量是否为正态分布。因为正态分布的偏度为零,是许多统计过程的假设。
分布可以有右偏度(或正偏度)、左偏度(或负偏度)或零偏度。右偏态分布在其峰值的右侧较长,而左偏态分布在其峰值的左侧较长。
1、零偏度
—当一个分布的偏度为零时,它是对称的。它的左右两边是镜像。正态分布的偏度为零,但不是只有正态分布的偏度为零。任何对称分布,如均匀分布或某些双峰分布,偏度都是零。
检查变量是否具有倾斜分布的最简单方法是将其绘制成直方图。
分布近似对称,观测值在峰值的左右两侧分布相似。因此分布的偏度近似为零。在零偏度的分布中,平均值和中位数是相等的,也就是说:
mean = median
mean > median
mean < median
有几个公式可以用来测量偏度。其中最简单的是皮尔逊中值偏度。它就是利用了上面我们说的偏态分布中均值和中位数不相等来计算的。
皮尔逊中位数偏度是计算均值和中位数之间有多少个标准差。
真实的观测很少有刚好为0的皮尔逊偏中值。因为如果数据的值接近于0,则可以认为它具有零偏度,但是在实际数据中很少有没有零偏度的分布数据。
例如,我们每年观测到的太阳黑子数量的Pearson中位数偏度:平均值= 48.6,中位数= 39,标准差= 39.5。那么公式如下:
如果该值介于:
如果你的统计过程需要正态分布并且你的数据是倾斜的,你通常有三个选择:
下表总结了一些常用数据变换:
数据的偏度是用来衡量概率分布或数据集中不对称程度的统计量。它描述了数据分布的尾部在平均值的哪一侧更重或更长。通过计算偏度,可以更好地了解数据的分布特征,并在需要时采取适当的数据处理或分析方法。但是需要注意的是,偏度只是数据分布的一种度量,不能完全代表数据的整体特征,因此在分析数据时需要综合考虑其他统计指标和可视化方法。
作者:Dhaval Raval
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。